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Discrete nonlinear Schrödinger breathers in a phonon bath
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Abstract. We study the dynamics of the discrete nonlinear Schrödinger lattice initialized such that a very
long transitory period of time in which standard Boltzmann statistics is insufficient is reached. Our study
of the nonlinear system locked in this non-Gibbsian state focuses on the dynamics of discrete breathers
(also called intrinsic localized modes). It is found that part of the energy spontaneously condenses into
several discrete breathers. Although these discrete breathers are extremely long lived, their total number is
found to decrease as the evolution progresses. Even though the total number of discrete breathers decreases
we report the surprising observation that the energy content in the discrete breather population increases.
We interpret these observations in the perspective of discrete breather creation and annihilation and find
that the death of a discrete breather cause effective energy transfer to a spatially nearby discrete breather.
It is found that the concepts of a multi-frequency discrete breather and of internal modes is crucial for this
process. Finally, we find that the existence of a discrete breather tends to soften the lattice in its immediate
neighborhood, resulting in high amplitude thermal fluctuation close to an existing discrete breather. This
in turn nucleates discrete breather creation close to a already existing discrete breather.

PACS. 63.70.+h Statistical mechanics of lattice vibrations and displacive phase transitions – 63.20.Pw
Localized modes – 63.20.Ry Anharmonic lattice modes

1 Introduction

The concept of discrete breathers has in recent years be-
come more and more central [1–6] in the investigations
of the dynamical properties of nonlinear lattice systems.
Much research has been devoted to the study of the exis-
tence, stability, mobility etc. of the discrete breathers, also
referred to as “intrinsic localized modes”, and already sev-
eral review articles [7–9] have been devoted to the subject
of the dynamics of nonlinear lattices from the perspective
of the breather. The main body of this work has been de-
voted to the study of the properties of discrete breathers
in homogeneous lattices and numerical algorithms [10] has
been developed allowing accurate and extensive studies of
the dynamics of pure breather excitations. Recently, their
mobility [11,12] has been studied and related to the ex-
istence of internal modes of the discrete breathers, which
has also lead to an appreciation of other properties re-
sulting from the internal structures discrete breather can
posses.

Fewer studies have been devoted to discrete breathers
in more realistic environments, such as thermalized
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systems [13], and to their interaction with other discrete
breathers and phonons [14,15], etc. In the present work
we will study breathers or breather-like excitations that
are spontaneously created and thereafter exists in a re-
alistic noisy environment. The spontaneous emergence of
breathers has previously been observed in contexts driven
by thermal shocks, [16] where the environment is almost
void any thermal fluctuations.

We perform this study in the framework of a one-
dimensional discrete nonintegrable nonlinear Schrödinger
(DNLS) equation. The existence and stability and several
other aspects of breathers in the DNLS system have been
clarified using the concept of “anti-integrability” [17], and
Melnikov analysis [18]. The importance of the DNLS sys-
tem, as one of the most widely studied discrete nonlin-
ear systems, stems not only from its applicability in di-
verse physical situations but also from its simple, yet rich,
mathematical structure. It is worth mentioning that the
DNLS exhibits a richness that this system in its integrable
version does not, either in the discrete version (Ablowitz-
Ladik discretization [19]) or its continuum limit.

The thermalization of the DNLS systems has been
studied previously [20,21] and these studies have shown
that the dynamics exhibits two very different characteris-
tics depending on the initial energy density h = H/N and
norm density n = N/N (for definition of Hamiltonian H
and norm N see, equation (4) and below equation (4), re-
spectively), where N is the system size. At low densities
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(exact relationship is given in [21]) a thermalized state
appears after a relatively short time, where all the corre-
lations can be obtained from the partition function

Z(β) = Tr (exp [−β(H + µN )]) . (1)

In the thermalized state the discrete breathers do not oc-
cur with long lifetimes and are not easily distinguishable
from the phonon background.

Contrary at high densities a non-Gibbsian regime
where the a statistical mechanics description requires for-
mal introduction of “negative temperatures” emerge. In
this regime breather-like excitations spontaneously appear
in the dynamics. This is much in accordance with the
concepts known in the statistical mechanics description
of vortex structures in plasma and hydrodynamics appli-
cations [22]. A complete discussion of the statistical me-
chanics results is given in [21]. Since, the existence of long
transitory regimes is known in several other contexts the
above described concept may be thought of as somewhat
generic to extended nonlinear systems. Therefore the focus
of this paper is the dynamics in this non-Gibbsian regime.

The structure of the paper is a follows. In the next
section, we describe the numerical simulations we have
performed on the system. We will describe in detail the ob-
servations, focusing on the breather behavior. In Section 3
we give our interpretations of the observation reported in
Section 2. Finally, Section 4 presents our conclusions.

2 Molecular dynamics results

We are studying the one-dimensional discrete nonlinear
Schrödinger equation (DNLS)

iψ̇n + (ψn+1 + ψn−1) + a|ψn|2ψn = 0, (2)

where the overdot denotes the time derivative, n is a site
index, and a is a real tunable coefficient to the nonlinear
term. Equation (2) can be written in Hamiltonian form as

iψ̇n =
∂H

∂ψ∗n
(3)

with canonical conjugated variables {ψn, iψ∗n} and Hamil-
tonian

H({ψn, iψ∗n}) =
∑
n

(
−(ψnψ∗n+1 + ψ∗nψn+1)− a

2
|ψn|4

)
.

(4)

In addition to the Hamiltonian H, the dynamics conserves
the norm N =

∑
n |ψn|2. These conserved quantities were

monitored frequently in our molecular dynamics simula-
tions to insure accuracy of the 4’th order Runge-Kutta
scheme.

The system is initialized by assigning each site with a
random value, x, with the distribution, p(x)

p(x) =
k

π

1
x2 + k2

· (5)

site

tim
e

20 40 60 80 100

0

1

2

3

4

5

x 10
5

Fig. 1. Evolution of local energy En along the chain (to-
tal length 2 500 sites). The horizontal axis indicates the posi-
tion along the chain and the vertical axis corresponds to time
(evolving downwards). The blue color indicates that the local
energy is at its background level while the more red indicate
energies higher than background level. a = 10 and the initial
state was taken from equation (5) with k = 0.1.

The Lorentzian distribution is chosen in order to have
more than exponentially small probabilities for sites being
assigned large values which leads the breather-like excita-
tions to appear almost immediately. Several different ini-
tial conditions like, uniform distributions, single phonon
modes, etc. has been tried and as long as the energy den-
sity and norm densities are in the non-Gibbsian regime
(see, [21]) the initial configuration is of no importance
in the sense that the breather spontaneously appear and
show the behavior we are about to describe. The initial
configurations does however influence the timescale in-
volved in reaching the breather regime, which is the reason
we choose the Lorentzian (5).

As an example of the molecular dynamics simulations
we show in Figure 1 the evolution of the energy density
En. Here, we clearly see that high amplitude excitations
spontaneously appear out of the fluctuations. That these
excitations are breathers is easily verified by frequency
analyzing the dynamics of these particular sites.

It is seen that some of these breathers are extremely
long lived, while others vanish. It is therefore tempting
to conclude that eventually all breathers will vanish from
the system causing it to relax into an equipartitioned
state. However, if we monitor the evolution of the part
of the total energy E0 which is contained within the
breather, we find that the fraction of the energy trapped
in the breathers is increasing. An example obtained for a
N = 2 500 site system is shown in Figure 2. In Figure 2
the breather has been defined (dashed line) by an ampli-
tude higher than 1.2 and (solid line) higher than 1.3. Even
though the number of breathers is obviously decreasing,
the energy content in the breathers is increasing, causing
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Fig. 2. The fraction of the total energy E0 trapped at the
breathers Eb, versus time. Here a breather is (dashed line)
defined by an amplitude higher than 1.2 and (solid line) higher
than 1.3.

an effective cooling of the phonon bath. A closer scrutiny
of the curves (particular the dashed curve) shows that the
energy content in the breathers remains constant for a long
period of time and then rather suddenly increases. After-
wards it stays constant again until the sudden increase
repeats itself. This indicates that the increase is related
to special events and thus not a continuous process. This
was tested by inserting an exact breather into a previously
thermalized bath with a given temperature T [21] and
then monitoring the energy content in the breather. The
experiment was performed for a representative set of bath
temperatures and breather amplitudes (frequencies) and
the breather was never observed to gain energy from the
bath; rather the energy content always remained (apart
from small fluctuations) constant for thousand of breath-
ing periods unless the discrete breather was destroyed at
an early stage by the thermal fluctuation. The sponta-
neous destruction happened primarily for small amplitude
breathers and we will address this phenomenon again later
in this paper.

We take the above observations as a demonstration
that the breathers can not pump energy directly from a
thermalized background. A direct indication of the energy
gain in the breathers being related to discrete events is
found in Figure 1. Here, we clearly see that the increase
of energy content in the right most breather occurs just
after the smaller breather to the left vanishes. We have
observed this to be the typical scenario. Thus there is a
tendency for large amplitude breathers to absorb some
of the energy released once a spatially close by breather
dies. The tendency of the energy to accumulate in breather
excitations has previously been observed [23].

In Figure 3 we show a blow-up of the time window
where a breather vanishes and it is seen that the breather
splits up into several small amplitude but localized exci-
tations which propagate in apparently random directions.

Fig. 3. Expanded scale showing a single frequency breather
spontaneous splitting into several smaller amplitude excita-
tions.
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Fig. 4. The evolution of |ψn| just before the breather breaks
up. Shown is the center site n = 0 (solid line), the neighboring
site to the left n = −1 (dashed line) where the new breather
forms, and the neighboring site to the right n = 1 (dashed-
dotted line) where the evolution is essentially unaffected.

Figure 4 displays the evolution of a center site and the
two nearest-neighbor sites for a breather that is about to
break up into several small amplitude excitations. As the
breather approaches the break-up point the amplitude at
the neighboring site to the left increases significantly, and
additionally the oscillation at the center site introduce a
new frequency besides the breathing frequency.

If we Fourier analyze the evolution shown in Figure 4
(see in Fig. 5) we find that the frequency of the oscil-
lation at the neighboring site to the left increases until
a certain point amplitude (frequency). It is noteworthy
that the frequency is rather far outside the linear phonon
band. Additionally the center oscillation is also affected
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Fig. 5. Frequency spectrum of the evolution shown in Figure 4
for the center site n = 0 (upper panel) and for the neighboring
site to the left n = −1 (lower panel).

and the frequency of the neighboring site is apparent in
the spectrum of the center site.

This scenario indicates that the breather becomes un-
stable because high amplitude is accumulating at the
neighboring site, causing the breather to transform into
a multi-breather state. The splitting of the breather can
be analyses in terms of the stability of this multi-breather
state.

3 Interpretation of molecular dynamics results

In this section we will present an interpretation of the ob-
served phenomena in terms of breather dynamics. The ba-
sic elements are that initial condition prevents the system
from directly relaxing into a Gibbsian thermalized state.
Instead a very long (> 106 time units) transitory state
is reached, where the system behavior is dominated by
spontaneously created breathers. Although the number of
breathers is decreasing, the portion of the energy trapped
in these excitations is increasing. We interpret this as fol-
lows. Due to the increased amplitude of the fluctuations
close to an existing breather (shown in Sect. 3.2) a two-
(or more) frequency breather is created. An instability due
to an internal mode in these more complex excitations can
(rather than the initial breather) provide several (shown
in Sect. 3.1) paths for the initial breather excitation to
split into lower amplitude excitations capable of propaga-
tion. The generated propagating excitations can interact
with other existing breathers and transfer their (or part of
their) energy to stationary high amplitude breathers (ad-
dressed in Sect. 3.3) producing transfer of energy from the
fluctuating phonon bath to the high amplitude breathers.
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Fig. 6. The Floquet spectrum λ = |λ| exp(iθ) versus frequency
ω0. Upper panel shows |λ| vs. ω0 and lower panel shows θ vs.
ω0 (ωb = 14).

3.1 Two frequency breathers

It has already been demonstrated in Figures 4 and 5 that
an excitation with more that one frequency can form at
the site of an already existing single frequency breather.
In order to study the splitting process shown in Figure 3
we investigate the stability of a two-frequency breather.

The linear stability of multi-breathers in the frame-
work of the DNLS equation has already been discussed [17]
in the spirit of the anti-continuous limit [4]. That is start-
ing from the decoupled system and numerically continuing
the trivial breather solution into the regime of non zero
coupling. Here we shall briefly study the changing stabil-
ity as ratio between the two breathing frequencies, ω0 and
ωb, changes. Specifically we shall study the stability of the
two frequency breather keeping ωb fixed and changing ω0,
(ω0 < ωb).

The linear stability is determined by the spectrum [17]
of the Floquet F operator (defined in Eq. (8)), which
we calculate and diagonalize numerically. Generally, linear
stability is assured as long as all eigenvalues remain on the
unit circle (due to the Floquet operator being symplectic).
For the the two-frequency breather four eigenvalues will
always be unity λ = 1 due to time reversibility [17].

The stability of a two-frequency breathers generally
follows the following pattern for fixed frequency ωb (and
nonlinearity a). The two-frequency breather is unstable
if ω0 is too small, but becomes stable as ω0 is increased.
Further increasing ω0 leads, at ω0 = ωb−2 to the localized
two-frequency breather bifurcating into a phonon breather
which has a non vanishing phonon tail. Investigating the
the stability in more detail we therefore choose (ωb =
14) (which is in the range of the breathers observed in
the full system dynamics) and choose ω0 = 3.4 where the
two-frequency breather is stable. In Figure 6 we show the
eigenvalue of the Floquet matrix as the frequency ω0 is
decreased.
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Fig. 7. Two-frequency breather versus ω0. A bifurcation seen
at ω0 = 12 ωb = 14.

At ω0 = 3.4 all the eigenvalues are in the phonon
band (strictly speaking the frequency ωµ = θ

2πωb (λ =
exp(±iθ)) of the corresponding eigenmode is in the phonon
band) so all eigenmodes are extended. However, as ω0 is
decreased one pair of eigenvalues bifurcates off the k = 0
phonon band edge (at ω0 ' 3.2), and creates a local-
ized eigenmode. These eigenvalues collide at unity when
ω0 ' 2.9 and move out on the real axis as ω0 is de-
creased, further causing the two-frequency breather to
become unstable. If we increase ω0, no localized modes
appear and the breather consequently remains stable.
However when ω0 = ωb − 2 (as can be deduced from
Eq. (29) of Ref. [17]) the two-frequency breather bifur-
cates to a phonon breather shown in Figure 7. The phonon
breathers is also linearly stable but because of the nonva-
nishing tail the energy content is not finite making this
object irrelevant for our case.

It was already demonstrated in reference [17] that lo-
calized mode bifurcating off the linear band corresponds
to a pinning mode of the weakest localized part of the two-
frequency breather. Also in reference [11] it was demon-
strated for a single-site breather that a perturbation along
the pinning mode can lead to mobility of the breather. In
our situation this implies that a perturbation along the
localized mode could lead the two-frequency breather to
break apart into its two components. The presence of a
thermalized bath around the breather could lead to a per-
turbation of the localized mode and consequently a spon-
taneous splitting. To illustrate this, we have injected a
two-frequency breather (ωb = 14, and ω0 = 3.5; thus a
breather with a very weak localized mode) into a bath
thermalized at the (low) temperature β = (kBT )−1 =
1 000 (see Ref. [21] for details about thermalizing the sys-
tem at a predescribed temperature). The result is seen in
Figure 8 where the energy density is plotted versus time.
As expected, the presence of the thermal bath causes the
two-frequency breather to split into its to components.
The splitting was tested not to occur in the absence of
the localized mode.

Fig. 8. Energy density of the evolution of a two-frequency
breather versus time (ωb = 14, and ω0 = 3.5) subjected to a
thermalized bath.

We believe this mechanism is responsible for the ther-
mally induced splitting that is observed in the full dynam-
ics, of which an example is detailed in Figure 3.

3.2 Two frequency breather generation

In this section we address question of why the pres-
ence of a single frequency breather allows creation of a
nearby breather which eventually leads to the creation of
breathers. Considering the statistics of the phonon bath
around a breather, we assume that it is acceptable to treat
the small fluctuations in a linear framework and therefore
study the linearized system around a periodic breather so-
lution {ψ(0)

n (t)}. That is we have ψn(t) = ψ
(0)
n (t) + εn(t).

Decomposing into real and real and imaginary parts, we
write ψ(0)

n = xn+iyn, and εn = ξn+iηn, where xn, yn, ξn,
and ηn are real functions. Substituting into equation (2)
and linearizing, we obtain

ξ̇n = − (ηn+1 + ηn−1)
+ a((x2

n + y2
n)ηn − 2(xnξn + ynηn)yn) (6)

η̇n = − (ξn+1 + ξn−1)
+ a((x2

n + y2
n)ξn − 2(xnξn + ynηn)xn). (7)

Then the linear modes around the breather are found by
diagonalizing the Floquet operator, F, defined as

X(tb) = FX(0) (8)

with

X(t) =
(
{ξn(t)}
{ηn(t)}

)
. (9)

Here, F exhibits a set of conjugate pairs of eigen-
value exp(±2πiωµ/ωb) and the corresponding normal-
ized eigenmodes Xµ(0) = {ξµn(0), ηµn(0)} and Xµ∗(0).
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These eigenmodes will fulfill the Bloch condition Xµ(t) =
exp(iωµt)χµ(t), where χµ is periodic with the period tb of
the breather.

It is known [14] that as we are dealing with a one
channel scattering the scattering of phonons through the
breather is elastic, so that the breathers behave as a static
impurity at least in the limit of low amplitude phonons. In
this case it appears justified that, in thermal equilibrium
at temperature T = (kBβ)−1, the complex amplitude λµ
of each eigenmode follows standard Boltzmann statistics
exp(−βωµ|λµ|2/2)/C0 (C0 is a normalizing factor). This
will produce the the correct thermodynamic statistics far
from the breather, where the eigenmodes are plane waves
with frequency ωµ and wave vector ±qµ. However, this
requires εµn to be expressed in an orthonormal basis∑

n

|εµn|2 = 1, and
∑
n

εµ∗nε
µ′

n = δµ,µ′ . (10)

This condition would be trivially achievable considering
a real static impurity. It is more speculative in our case,
with a time dependent potential. In a small system these
quantities may dependent on time, for large systems how-
ever this time dependence becomes negligible because the
solutions of equation (7) tend to plane waves at infinity
and the weight of the breather region thus become negli-
gible. (The problem would persist in the presence of inter-
nal modes but we assume that such modes are absent.) So
the remedy of this problem is to choose the system larger
enough, in order to avoid significant time dependence.

Now the general solution of the linearized equations (7)
can be expressed as a linear combination of the eigen-
modes

εn =
1
2

∑
µ

λµε
µ
n + cc. (11)

The probability distribution of εn which is a sum of in-
dependent Gaussian variables, is obviously, from equa-
tion (11), a Gaussian. The variance of the Gaussian is

〈|εn|2〉 =
∑
µ

〈|λµ|2〉|εµn|2 =
∑
µ

1
βωµ
|εµn|2. (12)

In a large system without a breather the linear modes
would be plane waves, and equation (12) would yield the
standard result

〈|εn|2〉 =
1

2πβ

∫ π

−π

dq
ω(q)

, (13)

where ω(q) is the phonon dispersion. Thus, in the absence
of the breather the average size of the fluctuations would
be uniform. In the presence of a breather we have to cal-
culated |εn|2 numerically, diagonalizing the Floquet oper-
ator. In Figure 9 we show |εn|2 versus lattice site n and
breather frequency ωb. Surprisingly, we see that the av-
eraged fluctuation at the sites close to the breather is
significantly larger than in the rest of the lattice. The
breather seems to introduce a softening at the neighbor-
ing sites. The possibility of large fluctuations close to the
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Fig. 9. Variance 〈|εn|2〉 of thermal fluctuations, versus
breather frequency ωb. Breather center is at n = 31.

breather sites indicates that there is an increased probabil-
ity to create a new breather close to an existing breather,
which explains the formation of multi-frequency breathers
seen in the simulations reported in this paper. Further we
see from Figure 9 that, as the breather frequency ωb ap-
proaches the edge of the linear band, the fluctuations at
the breather center increase dramatically, indicating that
broad, low amplitude breathers have a higher probability
of being destroyed by the thermal fluctuations than high
amplitude breathers.

3.3 Energy accumulation in breathers

In the preceding two subsections we show how the pres-
ence of a single frequency breather makes it probable that
a new breather is generated nearby by the thermal fluc-
tuations, and we show that the multi-frequency breathers
created in this manner are likely to split due to thermal
excitation of their internal modes. We are still missing
the final feature, namely the absorption of the generated
small amplitude breathers by neighboring high amplitude
breathers. We now address this.

As a demonstration that this is indeed possible, we
show an example in Figure 10.

Figure 10 shows the collision of a small amplitude wave
initialized as

ψn = A sech(Bn) exp(iCn), (14)

where A, B and C are tunable parameters. (In Fig. 10
A = 0.2 B = 0.3 and C = 0.4 was chosen.) The particu-
lar values of these parameters has no significance for the
phenomenon observed: several choices were tested and ab-
sorption always occurred to some degree. The reason for
the wavepacket not to move at constant velocity is that,
due to the large nonlinearity (a = 10), the localized exci-
tations encounters a rather large barrier [24] when trans-
lating from site to site.
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Fig. 10. Collision of a propagating small amplitude breather
with a pinned large amplitude breather with ωb = 7.5. Almost
total absorption is observed a = 10.

There is one subtlety to the phenomenon of absorp-
tion we demonstrate in Figure 10. Namely, if the large
amplitude breather is chosen to be exact, that is gener-
ated from the anti-continuous limit, and inserted in a non-
thermalized system, and the small amplitude wavepacket
is launched toward it no absorption occurs since, the
wavepacket is fully reflected. On the other hand if the
breather ψs

n upon injection in the system is perturbed in
the following manner,

ψn = ψs
n exp(iγn), (15)

then the absorption appears as demonstrated above. The
power γ can be chosen to be rather large, because the
large amplitude breathers is very tightly pinned to the
lattice [24].

4 Summary

In summary we have found find that initializing the sys-
tem in a non Gibbsian state with large fluctuations spon-
taneously generates several discrete breathers. The total
energy content of these breathers increase in time while
the actual number of breathers decrease so that the sys-
tem tends to a state of isolated breathers in a cold phonon
bath. These breathers become more rare but of increas-
ingly larger amplitude and the phonon bath colder as time
increases.

Discrete breathers seem to favor larger phonon fluc-
tuations in their immediate neighborhood, which makes
more probable the generation of a new breather in their
close vicinity (using the energy of the phonon bath). This
new breather may be ejected as a propagating breather by
effect of the phonon noise if this two frequency breather
approaches its instability threshold. In the example of Fig-
ure 9 a stationary single frequency breather is recovered,
allowing the same process to be repeated. This means that

the initial breather acts like a catalyst for extracting en-
ergy from the phonon bath and generating new propagat-
ing breathers. In other cases, the two-frequency breather
is, via the interaction with the phonon bath, broken into
two (or more) propagating breathers. Finally the travel-
ing breathers can be absorbed (or at least partly absorbed)
by existing breathers. As a result the number of breathers
eventually decrease while their total energy content in-
creases, leaving the phonon bath increasingly colder.

Work at Los Alamos National Laboratory is performed under
the auspice of the US DOE.
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